Lecture 11

Semigroups of Operators

In this Lecture we gather a few notions on one-parameter semigroups of linear operators, confining to the essential tools that are needed in the sequel. As usual, \(X \) is a real or complex Banach space, with norm \(\| \cdot \| \). In this lecture Gaussian measures play no role.

11.1 Strongly continuous semigroups

Definition 11.1.1. Let \(\{ T(t) : t \geq 0 \} \) be a family of operators in \(\mathcal{L}(X) \). We say that it is a semigroup if
\[
T(0) = I, \quad T(t+s) = T(t)T(s) \quad \forall \ t, s \geq 0.
\]
A semigroup is called strongly continuous (or \(C_0 \)-semigroup) if for every \(x \in X \) the function \(T(\cdot)x : [0, \infty) \to X \) is continuous.

Let us present the most elementary properties of strongly continuous semigroups.

Lemma 11.1.2. Let \(\{ T(t) : t \geq 0 \} \subset \mathcal{L}(X) \) be a semigroup. The following properties hold:

(a) if there exist \(\delta > 0, M \geq 1 \) such that
\[
\| T(t) \| \leq M, \quad 0 \leq t \leq \delta,
\]
then, setting \(\omega = (\log M)/\delta \) we have
\[
\| T(t) \| \leq Me^{\omega t}, \quad t \geq 0. \tag{11.1.1}
\]
Moreover, for every \(x \in X \) the function \(t \mapsto T(t)x \) is continuous in \([0, +\infty) \) iff it is continuous at 0.

(b) If \(\{ T(t) : t \geq 0 \} \) is strongly continuous, then for any \(\delta > 0 \) there is \(M_\delta > 0 \) such that
\[
\| T(t) \| \leq M_\delta, \quad \forall \ t \in [0, \delta].
\]
Proof. (a) Using repeatedly the semigroup property in Definition 11.1.1 we get $T(t) = T(\delta)^{n-1}T(t-\delta)$ for $(n-1)\delta \leq t \leq n\delta$, whence $\|T(t)\| \leq M^n \leq M e^{\omega t}$. Let $x \in X$ be such that $t \mapsto T(t)x$ is continuous at 0, i.e., $\lim_{h \to 0^+} T(h)x = x$. Using again the semigroup property in Definition 11.1.1 it is easily seen that for every $t > 0$ the equality $\lim_{h \to 0^+} T(t+h)x = T(t)x$ holds. Moreover,

$$\|T(t-h)x - T(t)x\| = \|T(t-h)(x - T(h)x)\| \leq M e^{\omega(t-h)}\|(x - T(h)x)\|, \quad 0 < h < t,$$

whence $\lim_{h \to 0^+} T(t-h)x = T(t)x$. It follows that $t \mapsto T(t)x$ is continuous in $[0, +\infty)$.

(b) Let $x \in X$. As $T(t)x$ is continuous, for every $\delta > 0$ there is $S_{\delta,\varepsilon} > 0$ such that

$$\|T(t)x\| \leq S_{\delta,\varepsilon}, \quad \forall \ t \in [0, \delta].$$

The statement follows from the Uniform Boundedness Principle, see e.g. [Br, Chapter 2] or [DS1, §II.1].

If (11.1.1) holds with $M = 1$ and $\omega = 0$ then the semigroups is said semigroup of contractions or contractive semigroup. From now on, $\{T(t) : t \geq 0\}$ is a fixed strongly continuous semigroup.

Definition 11.1.3. The infinitesimal generator (or, shortly, the generator) of the semigroup $\{T(t) : t \geq 0\}$ is the operator defined by

$$D(L) = \left\{ x \in X : \exists \lim_{h \to 0^+} \frac{T(h) - I}{h}x \right\}, \quad Lx = \lim_{h \to 0^+} \frac{T(h) - I}{h}x.$$

By definition, the vector Lx is the right derivative of the function $t \mapsto T(t)x$ at $t = 0$ and $D(L)$ is the subspace where such derivative exists. In general, $D(L)$ is not the whole X, but it is dense, as the next proposition shows.

Proposition 11.1.4. The domain $D(L)$ of the generator is dense in X.

Proof. Set

$$M_{a,t}x = \frac{1}{t} \int_a^{a+t} T(s)x \, ds, \quad a \geq 0, \ t > 0, \ x \in X$$

(this is a X-valued Bochner integral). As the function $s \mapsto T(s)x$ is continuous, we have (see Exercise 11.1)

$$\lim_{t \to 0} M_{a,t}x = T(a)x.$$

In particular, $\lim_{t \to 0^+} M_{0,t}x = x$ for every $x \in X$. Let us show that for every $t > 0$, $M_{0,t}x \in D(L)$, which implies that the statement holds. We have

$$\frac{T(h) - I}{h} M_{0,t}x = \frac{1}{ht} \left(\int_0^t T(h+s)x \, ds - \int_0^t T(s)x \, ds \right)$$

$$= \frac{1}{ht} \left(\int_h^{h+t} T(s)x \, ds - \int_0^t T(s)x \, ds \right)$$

$$= \frac{1}{ht} \left(\int_{t-h}^h T(s)x \, ds - \int_0^h T(s)x \, ds \right)$$

$$= \frac{M_{t,h}x - M_{0,h}x}{t}.$$
Therefore, for every \(x \in X \) we have \(M_{0,t}x \in D(L) \) and

\[
L M_{0,t}x = \frac{T(t)x - x}{t}.
\]

Proposition 11.1.5. For every \(t > 0 \), \(T(t) \) maps \(D(L) \) into itself, and \(L \) and \(T(t) \) commute on \(D(L) \).

If \(x \in D(L) \), then the function \(T(\cdot)x \) is differentiable at every \(t \geq 0 \) and

\[
\frac{d}{dt} T(t)x = LT(t)x = T(t)Lx, \quad t \geq 0.
\]

Proof. For every \(x \in X \) and for every \(h > 0 \) we have

\[
\frac{T(h) - I}{h} T(t)x = T(t) \frac{T(h) - I}{h} x.
\]

If \(x \in D(L) \), letting \(h \to 0 \) we obtain \(T(t)x \in D(L) \) and \(LT(t)x = T(t)Lx \).

Fix \(t_0 \geq 0 \) and let \(h > 0 \). We have

\[
\frac{T(t_0 + h)x - T(t_0)x}{h} = T(t_0) \frac{T(h) - I}{h} x \to T(t_0)Lx \quad \text{as} \quad h \to 0^+.
\]

This shows that \(T(\cdot)x \) is right differentiable at \(t_0 \). Let us show that it is left differentiable, assuming \(t_0 > 0 \). If \(h \in (0, t_0) \) we have

\[
\frac{T(t_0 - h)x - T(t_0)x}{-h} = T(t_0 - h) \frac{T(h) - I}{h} x \to T(t_0)Lx \quad \text{as} \quad h \to 0^+,
\]
as

\[
\left\| T(t_0 - h) \frac{T(h) - I}{h} x - T(t_0)Lx \right\| \leq \left\| T(t_0 - h) \left(\frac{T(h) - I}{h} x - Lx \right) \right\| + \left\| (T(t_0 - h) - T(t_0))Lx \right\|
\]

and \(\|T(t_0 - h)\| \leq \sup_{0 \leq t \leq t_0} \|T(t)\| < \infty \) by Lemma 11.1.2. It follows that the function \(t \mapsto T(t)x \) is differentiable at all \(t \geq 0 \) and its derivative is \(T(t)Lx \), which is equal to \(LT(t)x \) by the first part of the proof.

Using Proposition 11.1.5 we prove that the generator \(L \) is a closed operator. Therefore, \(D(L) \) is a Banach space with the graph norm \(\|x\|_{D(L)} = \|x\| + \|Lx\| \).

Proposition 11.1.6. The generator \(L \) of any strongly continuous semigroup is a closed operator.

Proof. Let \((x_n) \) be a sequence in \(D(L) \), and let \(x, y \in X \) be such that \(x_n \to x \), \(Lx_n =: y_n \to y \). By Proposition 11.1.5 the function \(t \mapsto T(t)x_n \) is continuously differentiable in \([0, \infty)\). Hence for \(0 < h < 1 \) we have (see Exercise 11.1)

\[
\frac{T(h) - I}{h} x_n = \frac{1}{h} \int_0^h LT(t)x_n dt = \frac{1}{h} \int_0^h T(t)y_n dt,
\]
and then
\[
\left\| \frac{T(h) - I}{h}x - y \right\| \leq \left\| \frac{T(h) - I}{h} (x - x_n) \right\| + \left\| \frac{1}{h} \int_0^h T(t)(y_n - y) dt \right\| + \left\| \frac{1}{h} \int_0^h T(t)y dt - y \right\|
\]
\[
\leq C + \frac{1}{h} \left\| x - x_n \right\| + C \left\| y_n - y \right\| + \frac{1}{h} \int_0^h T(t)y dt - y,
\]
where \(C = \sup_{0 < t < 1} \| T(t) \|. \) Given \(\varepsilon > 0, \) there is \(h_0 \) such that for \(0 < h \leq h_0 \) we have \(\| \int_0^h T(t)y dt/h - y \| \leq \varepsilon/3. \) For \(h \in (0, h_0], \) take \(n \) such that \(\| x - x_n \| \leq \varepsilon h/3(C + 1) \) and \(\| y_n - y \| \leq \varepsilon/3C: \) we get \(\| T(h) - I/h x - y \| \leq \varepsilon \) and therefore \(x \in D(L) \) and \(y = Lx, \) i.e., the operator \(L \) is closed.

Proposition 11.1.5 implies that for any \(x \in D(L) \) the function \(u(t) = T(t)x \) is differentiable for \(t \geq 0 \) and it solves the Cauchy problem

\[
\begin{cases}
 u'(t) = Lu(t), & t \geq 0, \\
 u(0) = x.
\end{cases}
\]

Lemma 11.1.7. For every \(x \in D(L), \) the function \(u(t) := T(t)x \) is the unique solution of (11.1.3) belonging to \(C([0, +\infty); D(L)) \cap C^1([0, +\infty); X). \)

Proof. From Proposition 11.1.5 we know that \(u'(t) = T(t)Lx \) for every \(t \geq 0, \) and then \(u' \in C([0, +\infty); X). \) Therefore, \(u \in C^1([0, +\infty); X). \) Since \(D(L) \) is endowed with the graph norm, a function \(u : [0, +\infty) \to D(L) \) is continuous iff both \(u \) and \(Lu \) are continuous. In our case, both \(u \) and \(Lu = u' \) belong to \(C([0, +\infty); X), \) and then \(u \in C([0, +\infty); D(L)). \)

Let us prove that (11.1.3) has a unique solution in \(C([0, +\infty); D(L)) \cap C^1([0, +\infty); X). \) If \(u \in C([0, +\infty); D(L)) \cap C^1([0, +\infty); X) \) is any solution, we fix \(t > 0 \) and define the function

\[
v(s) := T(t-s)u(s), \quad 0 \leq s \leq t.
\]

Then (Exercise 11.2) \(v \) is differentiable, and \(v'(s) = -T(t-s)Lu(s) + T(t-s)u'(s) = 0 \) for \(0 \leq s \leq t, \) whence \(v(t) = v(0), \) i.e., \(u(t) = T(t)x. \)

Remark 11.1.8. If \(\{T(t) : t \geq 0\} \) is a \(C_0 \)-semigroup with generator \(L, \) then for every \(\lambda \in \mathbb{C} \) the family of operators

\[
S(t) = e^{\lambda t}T(t), \quad t \geq 0,
\]
is a \(C_0 \)-semigroup as well, with generator \(L + \lambda I : D(L) \to X. \) The semigroup property is obvious. Concerning the generator, for every \(x \in X \) we have

\[
\frac{S(h)x - x}{h} = e^{\lambda h}T(h)x - x + \frac{e^{\lambda h}x - x}{h}
\]
and then

\[
\lim_{h \to 0^+} \frac{S(h)x - x}{h} = \lim_{h \to 0^+} e^{\lambda h}T(h)x - x + \frac{e^{\lambda h}x - x}{h} = Lx + \lambda x
\]
iff \(x \in D(L). \)
Semigroups of Operators

Let \(\{T(t) : t \geq 0\} \) be a strongly continuous semigroup. Characterising the domain of its generator \(L \) may be difficult. However, for many proofs it is enough to know that “good” elements \(x \) are dense in \(D(L) \). A subspace \(D \subset D(L) \) is called a core of \(L \) if \(D \) is dense in \(D(L) \) with respect to the graph norm. The following proposition gives an easily checkable sufficient condition in order that \(D \) is a core.

Lemma 11.1.9. If \(D \subset D(L) \) is a dense subspace of \(X \) and \(T(t)(D) \subset D \) for every \(t \geq 0 \), then \(D \) is a core.

Proof. Let \(M, \omega \) be such that \(\|T(t)\| \leq Me^{\omega t} \) for every \(t > 0 \). For \(x \in D(L) \) we have

\[
Lx = \lim_{t \to 0} \frac{1}{t} \int_0^t T(s)Lx \, ds.
\]

Let \((x_n) \subset D \) be a sequence such that \(\lim_{n \to \infty} x_n = x \). Set

\[
y_{n,t} = \frac{1}{t} \int_0^t T(s)x_n \, ds = \frac{1}{t} \int_0^t T(s)(x_n - x) \, ds + \frac{1}{t} \int_0^t T(s)x \, ds.
\]

As the \(D(L) \)-valued function \(s \mapsto T(s)x_n \) is continuous in \([0, +\infty)\), the vector \(\int_0^t T(s)x_n \, ds \) belongs to \(D(L) \). Moreover, it is the limit of the Riemann sums of elements of \(D \) (see Exercise 11.1), hence it belongs to the closure of \(D \) in \(D(L) \). Therefore, \(y_{n,t} \) belongs to the closure of \(D \) in \(D(L) \) for every \(n \) and \(t \). Furthermore,

\[
\|y_{n,t} - x\| \leq \left\| \frac{1}{t} \int_0^t T(s)(x_n - x) \, ds \right\| + \left\| \frac{1}{t} \int_0^t T(s)x \, ds - x \right\|
\]

tends to 0 as \(t \to 0, n \to \infty \). By (11.1.2) we have

\[
Ly_{n,t} - Lx = \frac{T(t)(x_n - x) - (x_n - x)}{t} + \frac{1}{t} \int_0^t T(s)Lx \, ds - Lx.
\]

Given \(\varepsilon > 0 \), fix \(\tau > 0 \) such that

\[
\left\| \frac{1}{\tau} \int_0^\tau T(s)Lx \, ds - Lx \right\| \leq \varepsilon,
\]

and then take \(n \in \mathbb{N} \) such that \((Me^{\omega \tau} + 1)\|x_n - x\|/\tau \leq \varepsilon \). Therefore, \(\|L_{y_n,t} - Lx\| \leq 2\varepsilon \) and the statement follows.

11.2 Generation Theorems

In this section we recall the main generation theorems for \(C_0 \)-semigroups. The most general result is the classical Hille–Yosida Theorem, which gives a complete characterisation of the generators. For contractive semigroups, i.e., semigroups verifying the estimate \(\|T(t)\| \leq 1 \) for all \(t \geq 0 \), the characterisation of the generators provided by the Lumer-Phillips Theorem is often useful. We do not present here the proofs of these results, referring e.g. to [EN, §II.3].
First, we recall the definition of \textit{spectrum} and \textit{resolvent}. The natural setting for spectral theory is that of complex Banach spaces, hence if X is real we replace it by its complexification $\tilde{X} = \{x + iy : x, y \in X\}$ endowed with the norm
\[
\|x + iy\|_{\tilde{X}} := \sup_{-\pi \leq \theta \leq \pi} \|x \cos \theta + y \sin \theta\|
\]
(notice that the seemingly more natural “Euclidean norm” $(\|x\|^2 + \|y\|^2)^{1/2}$ is not a norm in general).

\textbf{Definition 11.2.1.} Let $L : D(L) \subset X \to X$ be a linear operator. The \textit{resolvent set} $\rho(L)$ and the \textit{spectrum} $\sigma(L)$ of L are defined by
\[
\rho(L) = \{\lambda \in \mathbb{C} : \exists (\lambda I - L)^{-1} \in \mathcal{L}(X)\}, \quad \sigma(L) = \mathbb{C} \setminus \rho(L).
\]

The complex numbers $\lambda \in \sigma(L)$ such that $\lambda I - L$ is not injective are the eigenvalues, and the vectors $x \in D(L)$ such that $Lx = \lambda x$ are the eigenvectors (or eigenfunctions, when X is a function space). The set $\sigma_p(L)$ whose elements are all the eigenvalues of L is the \textit{point spectrum}.

For $\lambda \in \rho(L)$, we set
\[
R(\lambda, L) := (\lambda I - L)^{-1}.
\]

The operator $R(\lambda, L)$ is the \textit{resolvent operator} or briefly \textit{resolvent}.

We ask to check (Exercise 11.3) that if the resolvent set $\rho(L)$ is not empty, then L is a closed operator. We also ask to check (Exercise 11.4) the following equality, known as the \textit{resolvent identity}
\[
R(\lambda, L) - R(\mu, L) = (\mu - \lambda)R(\lambda, L)R(\mu, L), \quad \forall \lambda, \mu \in \rho(L).
\]

\textbf{Theorem 11.2.2} (Hille–Yosida). The linear operator $L : D(L) \subset X \to X$ is the generator of a C_0-semigroup verifying estimate (11.1.1) iff the following conditions hold:
\[
\begin{cases}
(i) & D(L) \text{ is dense in } X, \\
(ii) & \rho(L) \supset \{\lambda \in \mathbb{R} : \lambda > \omega\}, \\
(iii) & \|R(\lambda, L)\|^k_{\mathcal{L}(X)} \leq \frac{M}{(\lambda - \omega)^k} \quad \forall k \in \mathbb{N}, \forall \lambda > \omega.
\end{cases}
\]

Before stating the Lumer–Phillips Theorem, we define the \textit{dissipative} operators.

\textbf{Definition 11.2.3.} A linear operator $(L, D(L))$ is called dissipative if
\[
\|(\lambda I - L)x\| \geq \lambda\|x\|
\]
for all $\lambda > 0$, $x \in D(L)$.

\textbf{Theorem 11.2.4} (Lumer–Phillips). A densely defined and dissipative operator L on X is closable and its closure is dissipative. Moreover, the following statements are equivalent.

(i) The closure of L generates a contraction C_0-semigroup.

(ii) The range of $\lambda I - L$ is dense in X for some (hence all) $\lambda > 0$.

11.3 Invariant measures

In our lectures we shall encounter semigroups defined in L^p spaces, i.e., $X = L^p(\Omega)$ where $(\Omega, \mathcal{F}, \mu)$ is a measure space, with $\mu(\Omega) < \infty$. A property that will play an important role is the conservation of the mean value, namely

$$\int_{\Omega} T(t)f \, d\mu = \int_{\Omega} f \, d\mu \quad \forall t > 0, \forall f \in L^p(\Omega).$$

In this case μ is called invariant for $T(t)$. The following proposition gives an equivalent condition for invariance, in terms of the generator of the semigroup rather than the semigroup itself.

Proposition 11.3.1. Let \(\{T(t) : t \geq 0\} \) be a strongly continuous semigroup with generator L in $L^p(\Omega, \mu)$, where (Ω, μ) is a measure space, $p \in [1, +\infty)$, and $\mu(\Omega) < \infty$. Then

$$\int_{\Omega} T(t)f \, d\mu = \int_{\Omega} f \, d\mu \quad \forall t > 0, \forall f \in L^p(\Omega, \mu) \iff \int_{\Omega} Lf \, d\mu = 0 \quad \forall f \in D(L).$$

Proof. “⇒” Let $f \in D(L)$. Then $\lim_{t \to 0} (T(t)f - f)/t = Lf$ in $L^p(\Omega, \mu)$ and consequently in $L^1(\Omega, \mu)$. Integrating we obtain

$$\int_{\Omega} Lf \, d\mu = \lim_{t \to 0} \frac{1}{t} \int_{\Omega} (T(t)f - f) \, d\mu = 0.$$

“⇐” Let $f \in D(L)$. Then the function $t \mapsto T(t)f$ belongs to $C^1([0, +\infty); L^p(\Omega, \mu))$ and $d/dt T(t)f = LT(t)f$, so that for every $t \geq 0$,

$$\frac{d}{dt} \int_X T(t)f \, d\mu = \int_X LT(t)f \, d\mu = 0.$$

Therefore the function $t \mapsto \int_X T(t)f \, d\mu$ is constant, and equal to $\int_X f \, d\mu$. The operator $L^p(\Omega, \mu) \to \mathbb{R}$, $f \mapsto \int_\Omega (T(t)f - f) \, d\mu$, is bounded and vanishes on the dense subset $D(L)$; hence it vanishes in the whole $L^p(\Omega, \mu)$. \hfill \Box

11.4 Analytic semigroups

We recall now an important class of semigroups, the analytic semigroups generated by sectorial operators. For the definition of sectorial operators we need that X is a complex Banach space.

Definition 11.4.1. A linear operator $L : D(L) \subset X \to X$ is called sectorial if there are $\omega \in \mathbb{R}$, $\theta \in (\pi/2, \pi)$, $M > 0$ such that

$$\begin{align*}
(i) \quad \rho(L) &\supset S_{\theta, \omega} := \{\lambda \in \mathbb{C} : \lambda \neq \omega, |\arg(\lambda - \omega)| < \theta\}, \\
(ii) \quad \|R(\lambda, L)\|_{\mathcal{L}(X)} &\leq \frac{M}{|\lambda - \omega|} \quad \forall \lambda \in S_{\theta, \omega}.
\end{align*}$$

(11.4.1)
Lecture 11

Sectorial operators with dense domains are infinitesimal generators of semigroups with noteworthy smoothing properties. The proof of the following theorem may be found in [EN, Chapter 2], [L, Chapter 2].

Theorem 11.4.2. Let L be a sectorial operator with dense domain. Then it is the infinitesimal generator of a semigroup $\{T(t) : t \geq 0\}$ that enjoys the following properties.

(i) $T(t)x \in D(L^k)$ for every $t > 0$, $x \in X$, $k \in \mathbb{N}$.

(ii) There are M_0, M_1, M_2, ... , such that

\[
\begin{align*}
(a) & \quad \|T(t)\|_{\mathcal{L}(X)} \leq M_0 e^{\omega t}, \ t > 0, \\
(b) & \quad \|t^k (L - \omega I)^k T(t)\|_{\mathcal{L}(X)} \leq M_k e^{\omega t}, \ t > 0,
\end{align*}
\]

where ω is the constant in (11.4.1).

(iii) The function $t \mapsto T(t)$ belongs to $C^\infty((0, +\infty); \mathcal{L}(X))$, and the equality

\[
\frac{d^k}{dt^k} T(t) = L^k T(t), \ t > 0,
\]

holds.

(iv) The function $t \mapsto T(t)$ has a $\mathcal{L}(X)$-valued holomorphic extension in a sector $S_{\beta,0}$ with $\beta > 0$.

The name “analytic semigroup” comes from property (iv). If Ω is an open set in \mathbb{C}, and Y is a complex Banach space, a function $f : \Omega \to Y$ is called holomorphic if it is differentiable at every $z_0 \in \Omega$ in the usual complex sense, i.e. there exists the limit

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0).
\]

As in the scalar case, such functions are infinitely many times differentiable at every $z_0 \in \Omega$, and the Taylor series $\sum_{k=0}^{\infty} f^{(k)}(z_0)(z - z_0)^k / k!$ converges to $f(z)$ for every z in a neighborhood of z_0.

We do not present the proof of this theorem, because in the case of Ornstein-Uhlenbeck semigroup that will be discussed in the next lectures we shall provide direct proofs of the relevant properties without relying on the above general results. A more general theory of analytic semigroups, not necessarily strongly continuous at $t = 0$, is available, see [L].

11.4.1 Self-adjoint operators in Hilbert spaces

If X is a Hilbert space (inner product $\langle \cdot, \cdot \rangle$, norm $\| \cdot \|$) then we can say more on semigroups and generators in connection to self-adjointness. Notice also that the dissipativity condition can be rephrased in the Hilbert space as follows. An operator $L : D(L) \to X$ is dissipative iff (see Exercise 11.5)

\[
\text{Re} \langle Lx, x \rangle \leq 0, \ \forall x \in D(L).
\]

Let us prove that any self-adjoint dissipative operator is sectorial.
Proposition 11.4.3. Let \(L : D(L) \subset X \to X \) be a self-adjoint dissipative operator. Then \(L \) is sectorial with \(\theta < \pi \) arbitrary and \(\omega = 0 \).

Proof. Let us first show that the spectrum of \(L \) is real. If \(\lambda = a + ib \in \mathbb{C} \), for every \(x \in D(L) \) we have

\[
\| (\lambda I - L)x \|^2 = (a^2 + b^2)\| x \|^2 - 2a \langle x, Lx \rangle + \| Lx \|^2 \geq b^2 \| x \|^2,
\]

hence if \(b \neq 0 \) then \(\lambda I - L \) is injective. Let us check that in this case it is also surjective, showing that its range is closed and dense in \(X \). Let \((x_n) \subset D(L) \) be a sequence such that the sequence \((\lambda x_n - Lx_n)\) is convergent. From the inequality

\[
\| (\lambda I - L)(x_n - x_m) \|^2 \geq b^2 \| x_n - x_m \|^2, \quad n, m \in \mathbb{N},
\]

it follows that the sequence \((x_n)\) is a Cauchy sequence, hence \((Lx_n)\) as well. Therefore, there are \(x, y \in X \) such that \(x_n \to x \) and \(Lx_n \to y \). Since \(L \) is closed, \(x \in D(L) \) and \(Lx = y \), hence \(\lambda x_n - Lx_n \) converges to \(\lambda x - Lx \in \text{rg} (\lambda I - L) \) and the range of \(\lambda I - L \) is closed.

Let now \(y \) be orthogonal to the range of \((\lambda I - L)\). Then, for every \(x \in D(L) \) we have \(\langle y, \lambda x - Lx \rangle = 0 \), whence \(y \in D(L^*) = D(L) \) and \(\lambda y - L^*y = \lambda y - Ly = 0 \). As \(\lambda I - L \) injective, \(y = 0 \) follows. Therefore the range of \((\lambda I - L)\) is dense in \(X \).

From the dissipativity of \(L \) it follows that the spectrum of \(L \) is contained in \((-\infty, 0]\). Indeed, if \(\lambda > 0 \) then for every \(x \in D(L) \) we have, instead of (11.4.5),

\[
\| (\lambda I - L)x \|^2 = \lambda^2 \| x \|^2 - 2\lambda \langle x, Lx \rangle + \| Lx \|^2 \geq \lambda^2 \| x \|^2,
\]

and arguing as above we deduce \(\lambda \in \rho(L) \).

Let us now estimate \(\| R(\lambda, L) \| \), for \(\lambda = re^{i\theta} \), with \(r > 0 \), \(-\pi < \theta < \pi \). For \(x \in X \), set \(u = R(\lambda, L)x \). Multiplying the equality \(\lambda u - Lu = x \) by \(e^{-i\theta/2} \) and then taking the inner product with \(u \), we get

\[
re^{i\theta/2} \| u \|^2 - e^{-i\theta/2} \langle Lu, u \rangle = e^{-i\theta/2} \langle x, u \rangle,
\]

whence, taking the real part,

\[
\rho \cos(\theta/2) \| u \|^2 - \cos(\theta/2) \langle Lu, u \rangle = \text{Re}(e^{-i\theta/2} \langle x, u \rangle) \leq \| x \| \| u \|
\]

and then, as \(\cos(\theta/2) > 0 \), also

\[
\| u \| \leq \frac{\| x \|}{|\lambda| \cos(\theta/2)}.
\]

with \(\theta = \arg \lambda \).

\[\square \]

Proposition 11.4.4. Let \(\{T(t) : t \geq 0\} \) be a \(C_0 \)-semigroup. The family of operators \(\{T^*(t) : t \geq 0\} \) is a \(C_0 \)-semigroup whose generator is \(L^* \).
Proof. The semigroup law is immediately checked. Let us prove the strong continuity. Possibly considering the rescaled semigroup $e^{-\omega t}T(t)$ with M, ω as in (11.1.1), see Remark 11.1.8, we may assume that $\|T(t)\|_{\mathcal{L}(X)} \leq M$ for every $t \geq 0$, without loss of generality, $\|T(t)\| = \|T(t)^*\| \leq 1$ (see Exercise 11.6). For $x \in X$ we have

\[
\|T(t)^*x - x\|^2 = \langle T(t)^*x - x, T(t)^*x - x \rangle \\
= \|T(t)^*x\|^2 + \|x\|^2 - \langle x, T(t)^*x \rangle - \langle T(t)^*x, x \rangle \\
\leq 2\|x\|^2 - \left(\langle x, T(t)^*x \rangle + \langle T(t)^*x, x \rangle \right) \\
= 2\|x\|^2 - \left(\langle T(t)x, x \rangle + \langle x, T(t)x \rangle \right)
\]

whence

\[
\limsup_{t \to 0} \|T(t)^*x - x\| = 0
\]

by the strong continuity of $T(t)$, and then $T(\cdot)^*x$ is continuous at 0. By Lemma 11.1.2, $t \mapsto T(t)^*x$ is continuous on $[0, \infty)$ and $\{T(t)^*: t \geq 0\}$ is a C_0-semigroup. Denoting by A its generator, for $x \in D(L)$ and $y \in D(A)$ we have

\[
\langle Lx, y \rangle = \lim_{t \to 0} \langle (t^{-1}(T(t) - I)x, y \rangle = \lim_{t \to 0} \langle x, t^{-1}(T(t)^* - I)y \rangle = \langle x, Ay \rangle,
\]

so that $A \subset L^*$. Conversely, for $y \in D(L^*)$, $x \in D(L)$ we have

\[
\langle x, T(t)^*y - y \rangle = \langle T(t)x - x, y \rangle = \int_0^t \langle LT(s)x, y \rangle \, ds \\
= \int_0^t \langle T(s)x, L^*y \rangle \, ds = \int_0^t \langle x, T(s)^*L^*y \rangle \, ds.
\]

We deduce

\[
T(t)^*y - y = \int_0^t T(s)^*L^*y \, ds,
\]

whence, dividing by t and letting $t \to 0$ we get $Ay = L^*y$ for every $y \in D(L^*)$ and consequently $L^* \subset A$. \hfill \Box

The following result is an immediate consequence of Proposition 11.4.4.

Corollary 11.4.5. The generator L is self-adjoint if and only if $T(t)$ is self-adjoint for every $t > 0$.

11.5 Exercises

Exercise 11.1. Let \mathbb{R} be endowed with the Lebesgue measure λ_1, and let $f : [a, b] \to X$ be a continuous function. Prove that it is Bochner integrable, that

\[
\int_a^b f(t) \, dt = \lim_{n \to \infty} \sum_{i=1}^n f(\tau_i) \frac{b-a}{n}
\]
for any choice of \(\tau_i \in \left[a + \frac{(b-a)(i-1)}{n}, a + \frac{(b-a)i}{n} \right], i = 1, \ldots, n \) (the sums in this approximation are the usual Riemann sums in the real-valued case) and that, setting

\[
F(t) = \int_a^t f(s)ds, \quad a \leq t \leq b,
\]

the function \(F \) is continuously differentiable, with

\[
F'(t) = f(t), \quad a \leq t \leq b.
\]

Exercise 11.2. Prove that if \(u \in C([0, +\infty); D(L)) \cap C^1([0, +\infty); X) \) is a solution of problem (11.1.3), then for \(t > 0 \) the function \(v(s) = T(t-s)u(s) \) is continuously differentiable in \([0, t]\) and it verifies \(v'(s) = -T(t-s)Lu(s) + T(t-s)u'(s) = 0 \) for \(0 \leq s \leq t \).

Exercise 11.3. Let \(L : D(L) \subset X \to X \) be a linear operator. Prove that if \(\rho(L) \neq \emptyset \) then \(L \) is closed.

Exercise 11.4. Prove the resolvent identity (11.2.3).

Exercise 11.5. Prove that in Hilbert spaces the dissipativity condition in Definition 11.2.3 is equivalent to (11.4.4).

Exercise 11.6. Let \(\{T(t) : t \geq 0\} \) be a bounded strongly continuous semigroup. Prove that the norm

\[
|x| := \sup_{t \geq 0} \|T(t)x\|
\]

is equivalent to \(\|\cdot\| \) and that \(T(t) \) is contractive on \((X, |\cdot|)\).

Bibliography

