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In 1572 Rafael Bombelli published his

only work, L’Algebra dedicated to 

Alessandro Rufini bishop of Melfi, a 

small city in South of Italy. The work 

was reprinted in 1579.

It had been written almost twenty years

before in five books, but only the first 

three were published in the XVI 

century. The last two books were found

and published by the mathematician

and historian of mathematics of the 

University of Bologna, Ettore 

Bortolotti, in 1929.  



Guglielmo Libri in his Histoire des Sciences Mathématiques en Italy
(1840) wrote: 

Bombelli’s Algebra is divided into three books. The first contains the  basic elements, calculation with radicals, 

and with imaginary numbers, the second one contains everything related to the resolution of equations up to the 

fourth degree, the third is a collection of problems, among which there are some of great difficulty regarding 

indeterminate analysis. 

In this treatise, all the knowledge of algebra of that time is expounded, the proofs are rigorous and complete and 

the science has a systematic aspect. The notations easily allow us to make calculations and it is well known to 

what extent notations influenced the development of algebra. The calculation with radicals is fully exposed, as 

well as the general theory of imaginary quantities, of which the author makes an application to the so-called 

“irreducible case” (“caso irriducibile” ). 

Bombelli was the first to have generally enunciated the reality of the three roots of an algebraic equation of third 

degree when all three present themselves in an imaginary form. In many cases he verified this claim by directly 

extracting the root of the two binomials. 

Bombelli’s work has contributed in no little way to the progress of mathematics. For the first time we see the 

rigor of synthesis applied to algebraic proofs. 



We will shortly return to Bombelli’s work. For now we may observe that 
much progress had been made since the algebra of the Arabs was timidly 
introduced into Latin Europe. Bombelli was well aware of this when he 
drew a brief history of the development of algebra. He cited the Greek 
author Diophantus of Alexandria, “a certain Maumetto of Mosé, Arab”, 
(Muhammad ibn Musa Al-Khwarizmi), Leonardo Pisano (Fibonacci), 
and lastly “Friar Luca of Borgo San Sepolcro” (Luca Pacioli). 

Jacopo de Barbari, ritratto di Luca Pacioli 

L. Pacioli, Summa 

de arithmetica, 

geometria 

proportioni et 

proportionalità, 

Venezia, 1494



The algebra made its way into Europe “laboriously and 

slowly”, wrote Carl Boyer,  from an Arab tradition 

transmitted through the Universities, copyists of the 

ecclesiastical schools, merchant activities, and some 

scholars from other fields of culture. 

Italy was one of the main routes through which the 

knowledge of the Arabs and algebra, arrived in the 

West. So, it is not surprising that algebraic research 

was mainly reborn and developed in Italy .

Gerbert of 

Aurillac, 

(pope Sylvester II 

from 999 since

1003).



The «scuole d’abaco»: an Italian phenomenon

For three centuries, after the Liber Abaci of Leonardo Pisano 
(1202) and before the Summa of Pacioli (1494), algebra as well 
as the Indo-Arabic numbering system, were taught by the Abacus 
teachers who wrote treatises, which remained unpublished for a 
long time. 

The Abacus schools flourished in the main cities of the North of 
Italy, like Pisa, Florence, Venice, Brescia, etc. The most famous 
teachers were called to argue publicly over difficult mathematical 
problems, in the squares, churches, and in the courts of the 
princes.  

Sometimes, a new theory was developed. This was the case of 
Leonardo Pisano who solved a problem proposed by Giovanni of 
Palermo at the court of Frederick II, King of Sicily. He 
developed the general theory of the “congruous” numbers which 
is expounded in his treatise Liber quadratorum. The problem was 
to find a square number such that by adding and by subtracting 5, 

the result is always a square number: ቊ
𝑥2 + 5 = 𝑧2

𝑥2 − 5 = 𝑦2

A dispute between Abacists and

Algorithmists.

Gregor Reisch, Margarita philosophica, 1508

The frontespice shows the two arithmetical

systems, with the Indo-Arabic digits and with the 

abacus.



Bologna University: a new teaching for the new 
arithmetics

From the end of XIV century onwards, a new 

teaching was introduced, named «Ad lecturam

Arithmeticae». In 1496, the teacher was the 

mathematician Scipione Del Ferro who has a 

place in the history of algebra since he was the 

first to solve the third degree algebraic equations 

(how to solve first and second degree equations 

was already known thanks to the Arab, Al-

Khwarizmi, Al-jabr w’al muqabala the title of 

his work. Leonardo Pisano made the method 

known in his Liber Abaci). 

Del Ferro did not publish his method which 

remained known only to some of his students.

Afterwards, other Italian mathematicians reached 

the same results and went even further. All the 

cases of the third and fourth degree algebraic 

equations were solved, even when in the formula 

square roots of negative numbers were present.  



The protagonists

Scipione del Ferro 
(Bologna 1465-1526)

Niccolò Tartaglia 
(Brescia 1499 circa-
1557)

Girolamo Cardano 
(Pavia 1501-1576)

Ludovico Ferrari 
(Bologna 1522-1565)

Rafael Bombelli
(Bologna 1526-1572 
circa) G. Cardano, Ars Magna, 1545 is the first printed work where the third and fourth degree 

algebraic equations are solved by radicals. Ludovico Ferrari was a scholar of Girolamo 

Cardano. In the Ars Magna, Cardano published a method to solve fourth degree equations

attributing the credit to Ferrari. The problem was reduced to solve two other equations, of 

third and second degree, respectively.   



Al-Khwarizmi Al-jabr w’al-muqabala

The six kinds of first and second degree 

algebraic equations and their names 

 squares equal to roots means 𝑎𝑥2 = 𝑏𝑥

 squares equal to number means 𝑎𝑥2 = 𝑐

 roots equal to number means 𝑎𝑥 = 𝑐

 squares and roots equal to number means 

𝑎𝑥2 + 𝑏𝑥 = 𝑐

 squares and number equal to roots

means 𝑎𝑥2 + 𝑐 = 𝑏𝑥

 roots and number equal to

squares means 𝑏𝑥 + 𝑐 = 𝑥2

where 𝑎, 𝑏, 𝑐 are positive numbers. 

The rule

The method to solve the equation 𝑥2 + 10𝑥 =
39 was taught this way: 

«you have to divide into two parts the number of 

the roots (10), in this case you get 5, then

multiply this number by itself (25) and add 39, so 

you get 64. Now you have to take the square root

of 64, that is 8. Subtract from 8 the half of the 

roots (5), the remainder is 3, the solution of the 

equation». 

This corresponds to the well known formula for 

the positive solution of the equation

𝑥2 + 𝑝𝑥 = 𝑞 with p, q positive numbers

𝑥 =
𝑝

2

2

+ 𝑞 −
𝑝

2

According to the equation, the two

rectangles together with the square x2

are equal to 39. 

The larger square is 39+25= 64

The side of the larger square is 5 +
𝑥 and is also equal to 8 

so  𝑥 = 8 − 5 = 3

Completing the square



The solution formula for the third degree algebraic 
equations

As previously mentioned, Cardano published the formula in his Ars Magna (1545). 

He considered three kinds of equations:

 cube and things ("cose") equal number which means 𝑥3 + 𝑎𝑥 = 𝑏

 cube and number equal things means 𝑥3 + 𝑏 = 𝑎𝑥

 cube equal things and number means 𝑥3 = 𝑎𝑥 + 𝑏

with a, b positive numbers. The mathematicians of the XVI century never considered 

the equation in the form 𝑥3 + 𝑎𝑥 + 𝑏 = 0, because they interpreted geometrically all 

the terms of the equations, that is cubes, and rectangular parallelepipeds. Considering 

only these three kinds of equations was not a lack of  generality; it was well known to 

Cardano that with a change of the unknown, it was possible to eliminate the second 

degree term (for example, given the equation 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 = 𝑐 the change of 

unknown is 𝑦 = 𝑥 +
𝑎

3
).  



Quando che’l cubo con le cose 

appresso

Se agguaglia a qualche 

numero discreto

Trovan dui altri differenti in 

esso.

Dapoi terrai questo per 

consueto

Che’l lor produtto sempre sia 

eguale

Al terzo cubo delle cose netto.

El residuo poi suo generale

Delli lor lati cubi ben sottratti

Varrà la tua cosa principale.

In el secondo de codesti atti

Quando che’l cubo restasse lui solo

Tu osserverai quest'altri contratti:

Del numer farai due parti a volo

Che l'una in l'altra si produca schietto

El terzo cubo delle cose in stolo.

Delle qual poi, per comun precetto

Torrai li lati cubi insieme gionti

Et cotal somma sarà il tuo concetto.

El terzo poi di questi nostri conti

Se solve col secondo, se ben guardi

Che per natura son quasi congionti.

Questi trovai, et non con passi tardi,

Nel mille cinquecente quatro e trenta

Con fondamenti ben saldi e gagliardi

Nella città dal mar intorno centa.

𝑥3 + 𝑝𝑥 = 𝑞

𝑢3 − 𝑣3 = 𝑞

𝑢3𝑣3 = (
𝑝

3
)3

𝑥 = 𝑢 − 𝑣

𝑥3 = 𝑝𝑥 + 𝑞

𝑢3 + 𝑣3 = 𝑞

𝑢3𝑣3 = (
𝑝

3
)3

𝑥 = 𝑢 + 𝑣

𝑥3 + 𝑞 = 𝑝𝑥

Tartaglia, Venezia 1534



𝑥3 + 6𝑥 = 20

The mathematicians of the XVI century operated only with 

homogeneous geometrical magnitudes.

𝑥3 is a cube, so 6𝑥 is also a solid. 

6𝑥 = 3 × 2𝑥 is considered as formed by three rectangular 

parallelepipeds having 2 as a face and x as the relative height. In the 

figure the three rectangular parallelepipeds have dimensions 

𝑢, 𝑣 and 𝑥 = 𝑢 − 𝑣, so

𝒖 × 𝒗 = 𝟐 that is 

𝒖𝟑 × 𝒗𝟑 = (
𝟔

𝟑
)𝟑= 𝟖 (Tartaglia second condition) 

The algebraic expression 𝑥3 + 6𝑥= (𝒖 − 𝒗)𝟑+𝟑 × 𝒖𝒗 𝒖 − 𝒗 is called

“gnomone”.  According to the equation, the “gnomone” yields 20. 

To complete the cube with edge AC=u, it is necessary to add to the 

“gnomone”, the cube 𝑣3. 

𝑢3 = (𝒖 − 𝒗)𝟑+𝟑 × 𝒖𝒗 𝒖 − 𝒗 + 𝑣3

that is

𝒖𝟑 = 𝟐𝟎 + 𝒗𝟑 (Tartaglia first condition) 

Completing the cube 

AC= u

AB=x=u-v

BC=v







To solve the equation 𝑥3 + 6𝑥 = 20

Let’s put into the equation, 𝑥 = 𝑢 − 𝑣.  If u and v are solutions of the following system

ቊ𝒖
𝟑 − 𝒗𝟑 = 𝟐𝟎
𝒖𝟑𝒗𝟑 = 𝟖

then 𝑥 = 𝑢 − 𝑣 is solution to the equation 𝑥3 + 6𝑥 = 20. 

And the problem is led back to find two numbers 𝑢3 and − 𝑣3 of which the sum and the product are known (20 and − 8). Such numbers

are the solutions to the second degree equation 𝒛𝟐 − 𝟐𝟎𝒛 − 𝟖 = 𝟎, that is 𝑢3 = 10 + 100 + 8 and −𝑣3= 10 − 100 + 8

𝒙 = 𝒖 − 𝒗 =
𝟑

𝟏𝟎𝟖 + 𝟏𝟎 −
𝟑

𝟏𝟎𝟖 − 𝟏𝟎

The rule was claimed for all the equations of this form 𝑥3 + 𝑝𝑥 = 𝑞 . The procedure was the following:  let us cube 
𝑝

3
and square

𝑞

2
and 

make the sum, (
𝑝

3
)3+(

𝑞

2
)2. 

Let us take the square root of the latter and add
𝑞

2
so you have (

𝑝

3
)3+(

𝑞

2
)2 +

𝑞

2
. Now extract the cube root of the latter and subtract the 

cube root of its «residuo» ( (
𝑝

3
)3+(

𝑞

2
)2 −

𝑞

2
) and you will have the solution

𝒙 =
𝟑

(
𝒑

𝟑
)𝟑+(

𝒒

𝟐
)𝟐 +

𝒒

𝟐
−

𝟑

(
𝒑

𝟑
)𝟑+(

𝒒

𝟐
)𝟐 −

𝒒

𝟐



The irreducible case of the cubic equation

To solve the equation 𝑥3 = 𝑝𝑥 + 𝑞, Cardano’s method consists in posing 

𝑥 = 𝑢 + 𝑣

by a procedure like the one followed in the case of the previous kind of equation, the 
solution formula is:

𝑥 = 𝑢 + 𝑣 =
3 𝑞

2
+ (

𝑞

2
)2 −(

𝑝

3
)3+

3 𝑞

2
− (

𝑞

2
)2 −(

𝑝

3
)3

The irreducible case turns out when (
𝑝

3
)3 > (

𝑞

2
)2. It was known that the equation admits

three real roots, but under the square root a negative number is present. In the Ars Magna 
Cardano carefully avoided this case. 

It was the mathematician Rafael Bombelli who solved this new and extravagant situation in 
his work L’Algebra (1572). 



L’Algebra of Bombelli: the first book

In the first book of L’Algebra,  Bombelli developed the calculations with square, cubic, fourth, etc. roots. 

Calculation rules also for the following algebraic expressions: 

𝑎 ± 𝑏, 𝑎 ± 𝑏 (called binomi and recisi) 

𝑎 ± 𝑏, 𝑎 ± 𝑏 (radici legate)

3 𝑎 ±
3
𝑏 (binomi cubici)

3 𝑎 ∓
3
𝑎𝑏 +

3
𝑏 (residuo cubico) (times the corresponding binomio cubico you get a rational number)

3

𝑎 ± 𝑏 , 
3

𝑎 ± 𝑏 (radici cubiche legate)

He solved the problem «to find the cube side of the binomio 𝑛 ± 𝑚 », that is to transform the expession
3

𝑛 ± 𝑚 into the expression 𝑣 ± 𝑢

Finally, to solve the irreducible case of the third degree equations, he introduced the imaginary

numbers and the calculation rules with them. 



Bombelli and the arithmetics with the square roots of negative 
numbers

−1 (the imaginary unit i) is called «plus of minus» (più di meno) 

− −1 (minus the imaginary unit –i) is called «minus of minus» (meno di meno) 

plus times plus of minus is plus of minus + × +𝑖 = +𝑖

minus times plus of minus is minus of minus − × +𝑖 = −𝑖

plus times minus of minus is minus of minus + × −𝑖 = −𝑖

minus times minus of minus is plus of minus − × −𝑖 = +𝑖

plus of minus times plus of minus is minus +𝒊 × +𝒊 = −

plus of minus times minus of minus is plus +𝑖 × −𝑖 = +

minus of minus times plus of minus is plus −𝑖 × +𝑖 = +

minus times plus of minus is plus of minus −𝑖 × −𝑖 = −



L’Algebra of Bombelli: the second book

Bombelli solved the third and fourth degree algebraic equations including equations which fall into the irreducible case. As 
an example, he solved the equation

𝑥3 = 15𝑥 − 4

The Cardano formula contains the  «sofistica» root −121

𝑥 =
3

2 + −121 +
3

2 − −121 =
3
2 + 11𝑖 +

3
2 − 11𝑖

It is easy to guess that 𝑥 = 4 is a real root of the equation. 

But how to get it from the formula? 

In the first book, Bombelli poses the problem «to find the cube side of a binomio in which a negative number appears under 

square root », that is, to transform the expessions
3
𝑎 ± −𝑏 into the expressions u ± −𝑣 (𝑏, 𝑣 positive numbers). 

Bombelli is aware that u and v have to satisfy the two conditions ቊ
𝑎 = 𝑢3 − 3𝑢𝑣

3
𝑎2 + 𝑏 = 𝑢2 + 𝑣

He proposes a method «per pratica», when 𝑎 = 2 and 𝑏 = 121.

In this case 
3
𝑎2 + 𝑏 =

3
4 + 121 = 5 and so the two conditions are ቊ2 = 𝑢3 − 3𝑢𝑣

5 = 𝑢2 + 𝑣

So u squared must be less than 5 and u cubed must be more than 2. «By experimenting» («a tentoni») Bombelli reaches
the conclusion that 𝑢 = 2 and 𝑣 = 1.  



“When the cube roots have side (“lato di numero sano” means positive 

integer) - claims Bombelli - with this rule, which is not a general rule, 

but a practical one, it is almost impossible not to find it”.  

With regard to the solution of the equation 𝑥3 = 15𝑥 − 4, 

3
2 + 11𝑖 = 2 + 𝑖 and

3
2 − 11𝑖 = 2 − 𝑖

and 𝑥=
3
2 + 11𝑖 +

3
2 − 11𝑖 = 2 + 𝑖 + 2 − 𝑖 =4 



Rafael Bombelli’s algebraic notations

𝑥3 = 15𝑥 + 4

2 + 0 − 121

3
2 + 0 − 121+

3
2 − 0 − 121

3
2 + 11𝑖 +

3
2 − 11𝑖that is

that is 2 + 11𝑖

Exponential notation for the powers of 

the unknown

The notation for square and cube roots



Ancora se puo procedere nella equatione di questo Cap[ito]lo in un altro modo, 

come se si havesse ad agguagliare

[cioè 𝒙𝟑=15x+4]

pigliasi il terzo de le Cose che è 5, cubasi fa 125 et questo se cava del quadrato 

della metà del numero che è 4, restarà 0 m 121che di questo pigliasi la Radice, dirà 

R|0 m 121| che aggiunta con la metà del numero farà 2 p R|0 m 121| che pigliatone 

il creatore cubico et aggiunto col suo residuo farà 

R3 |2 p R|0 m 121|| p R3 |2 m R|0 m 121|| e tanto vale la cosa.

[cioè 𝐱 =
𝟑
𝟐 + (𝟎 − 𝟏𝟐𝟏 +

𝟑
𝟐 − 𝟎 − 𝟏𝟐𝟏]

Et benché questo modo se possa più tosto chiamar sofistico che altrim[en]te come 

fu detto innanzi nel Capitolo di Censi, et Nu[me]ro eguali a Cose, che pure 

nell’operatione serve senza difficoltà niuna, et assai volte si trova la valuta de la 

Cosa per numero, come questo che ha creatore, che il creatore di R3 |2 p R|0 m

121|| sarà 2 p R|0 m 1|

[cioè 
𝟑
𝟐 + (𝟎 − 𝟏𝟐𝟏 = 𝟐 + 𝟎 − 𝟏 ]

che aggiunto col suo residuo che è 2 m R|0 m 1| 

[cioè 𝟐 − 𝟎 − 𝟏 ]

che aggiunti insieme fanno 4 che è la valuta della cosa.



Ancora se puo procedere nella equatione di questo Cap[ito]lo in un altro 

modo, come se si havesse ad agguagliare 

[cioè 𝒙𝟑=15x+4]

pigliasi il terzo de le Cose che è 5, cubasi fa 125 et questo se cava del 

quadrato della metà del numero che è 4, restarà 0 m 121che di questo pigliasi

la Radice, dirà R|0 m 121| che aggiunta con la metà del numero farà 2 p R|0 

m 121| che pigliatone il creatore cubico et aggiunto col suo residuo farà 

R3 |2 p R|0 m 121|| p R3 |2 m R|0 m 121|| e tanto vale la cosa.

[cioè 𝐱 =
𝟑
𝟐 + (𝟎 − 𝟏𝟐𝟏 +

𝟑
𝟐 − 𝟎 − 𝟏𝟐𝟏]

Et benché questo modo se possa più tosto chiamar sofistico che altrim[en]te 

come fu detto innanzi nel Capitolo di Censi, et Nu[me]ro eguali a Cose, che 

pure nell’operatione serve senza difficoltà niuna, et assai volte si trova la 

valuta de la Cosa per numero, come questo che ha creatore, che il creatore 

di R3 |2 p R|0 m 121|| sarà 2 p R|0 m 1|

[cioè 
𝟑
𝟐 + (𝟎 − 𝟏𝟐𝟏 = 𝟐 + 𝟎 − 𝟏 ]

che aggiunto col suo residuo che è 2 m R|0 m 1| 

[cioè 𝟐 − 𝟎 − 𝟏 ]

che aggiunti insieme fanno 4 che è la valuta della cosa.

Given the equation

[ 𝒙𝟑=15x+4]

Take a third of the «cose» (it means a third of the coefficient of x that is of 

15, which is 5), make its cube that is 125 and subtract it from the square of 

the half of the number 4, the difference is 0 m 121. Take the square root of 

the latter, that is R|0 m 121| and add the half of the number, 2 p R|0 m 121|. 

Take the cube root of it and add the cube root of its «residuo» 

R3 |2 p R|0 m 121|| p R3 |2 m R|0 m 121|| . This is the unknown x.

[ 𝐱 =
𝟑
𝟐 + (𝟎 − 𝟏𝟐𝟏 +

𝟑
𝟐 − 𝟎 − 𝟏𝟐𝟏]

This formula can be called «sofistica» as we said when we considered the 

equation of second degree 𝑥2 + 𝑐 = 𝑏𝑥 but sometimes you can find the 

unknown as a number as in this case. The «creatore» of  R3 |2 p R|0 m 121|| 

is 2 p R|0 m 1|

[
𝟑
𝟐 + (𝟎 − 𝟏𝟐𝟏 = 𝟐 + 𝟎 − 𝟏 ]

If you add it with its «residuo», that is with  2 m R|0 m 1| 

[ 𝟐 − 𝟎 − 𝟏 ]

The result is 4, the value of the unknown.



You can download the Ars Magna of Girolamo Cardano and the L’Algebra
of Rafael Bombelli from some websites: 

Internet Archive https://archive.org/

Biblioteca digitale del Museo Galileo 
https://www.museogalileo.it/it/biblioteca-e-istituto-di-ricerca/biblioteca-
digitale/catalogo-biblioteca-digitale.html

In Mathematica Italiana http://mathematica.sns.it/ you can also find
biographical news concerning the protagonists of this topic and 
bibliographical references. 

https://archive.org/
https://www.museogalileo.it/it/biblioteca-e-istituto-di-ricerca/biblioteca-digitale/catalogo-biblioteca-digitale.html
http://mathematica.sns.it/

