Materials related to the Workshop of ESU-9: Starting from the history of mathematics in Late Modern Italy (XVIII-XX centuries): From primary sources to mathematical concepts. Subsection: *Relaunching Italian education and research after political unification*, by Elena Lazzari.

Elementi di geometria, G. Lazzeri, A. Bassani, (2° ed 1898)

Some extracts from the original historical source

Chapter 3, Paragraph 215

215. Teorema. — Il luogo dei punti di un piano, tali che i segmenti tangenti, condotti da essi a due circoli, non concentrici, del piano medesimo, sieno eguali, è la parte di una retta perpendicolare alla retta dei centri dei due circoli, esterna ai cerchi limitati da essi.

Essendo c_1 , c_2 (Fig. 198) due circoli non concentrici di un piano, si facciano passare per essi, due superficie sferiche eguali e di raggio maggiore dei raggi dei due circoli dati, e sieno O_1', O_2' i centri di queste sfere. Allora il piano β , perpendicolare al segmento $O_1'O_2'$, nel suo punto medio, non può essere parallelo al piano α , poichè, se lo fosse, la retta dei centri delle due sfere, essendo perpendicolare al piano β per costruzione, sarebbe anche perpendicolare al piano α , e perciò i centri dei due circoli dati coinciderebbero, il che è escluso dall'ipotesi. Il piano β taglierà dunque il piano α secondo una retta r. che è il luogo geometrico dei punti del piano α , tali che sieno eguali i segmenti, condotti da essi, tangenti alle due sfere, e quindi anche quelli tangenti ai due circoli dati.

Dimostriamo ora che la retta r è perpendicolare alla retta dei centri O_1O_2 . Pertanto osserviamo che le perpendicolari al piano α , condotte per i centri O_1', O_2' delle due sfere S_1, S_2 , incontrano questo piano nei centri O_1, O_2 dei circoli c_1, c_2 , ed individuano un piano γ che è perpendicolare al piano α , e contiene le rette $O_1O_2, O_1'O_2'$. Ora anche il piano β è perpendicolare al piano γ , essendo perpendicolare alla retta $O_1'O_2'$ di questo piano, quindi (§ 65, Cor.) i piani α e β si tagliano secondo una retta r, che è perpendicolare a γ , e perciò perpendicolare anche alla retta O_1O_2 di questo piano.

215 Theorem - The locus of points in a plane such that the tangent segments, led by them to two circles, not concentric, in the same plane, are equal, is the part of a straight line perpendicular to the straight line of the centers, outside the circles bounded by them.

Let c1 and c2 (Figure 198) be two nonconcentric circumferences in a plane. Let there be two equal spherical surfaces passing through them with radii bigger than the radii of the two given circumferences, and let O'1 and O'2 be the centers of these spheres. Then the β -plane, perpendicular to the segment O'1O'2 at its midpoint, cannot be parallel to the α -plane, because if it were, the line of the centers of the two spheres, being perpendicular to the β -plane by construction, would also be perpendicular to the α -plane, and thus the centers of the two given circles would coincide, which is ruled out by the hypothesis. The plane will then cut the α -plane according to a straight line r, which is the geometric locus of the points in the plane, such that the segments tangent to the two spheres are equal, and so are those tangents to the two given circles. Let us now show that the straight line r is perpendicular to the line of centersO'1O'2. Observe then that the perpendiculars to the α -plane, passing through the centers O'1O'2 of the two spheres S1 and S2, meet this plane at the centers O1 and O2 of the circles c1 and c2 and locate a plane perpendicular to the α -plane and containing the straight lines O1O2 and O'1O'2. Now the β -plane is also perpendicular to the line O1O2. Now the β -plane is also perpendicular to the α -plane, being perpendicular to the line of this plane, so the α and β -planes cut along a straight line r, which is perpendicular to gamma plane, and thus also perpendicular to the line O1O2, of this plane.

Chapter 3, Paragraph 216

216. Teorema. — Dati tre circoli in un piano, tali che i loro centri non sieno in linea retta, i tre assi radicali di questi circoli, presi due a due, passano per uno stesso punto.

Essendo c_1 , c_2 , c_3 i tre circoli dati in un piano α , in modo che i tre centri non sieno in linea retta, si facciano passare per essi, ciò che è sempre possibile, tre superficie sferiche eguali S_1 , S_2 , S_3 di raggio maggiore dei raggi dei tre circoli dati, e sieno O_1', O_2', O_3' i centri di queste sfere. I piani perpendicolari ai segmenti $O_1'O_2', O_3'$ $O_1'O_3', O_2'O_3'$ nei loro punti di mezzo, tagliano il piano α secondo i tre assi radicali delle coppie di circoli $c_1, c_2; c_1, c_3; c_2, c_3,$ ed inoltre passano per una medesima retta r (§ 161, Cor. 1°), che è il luogo geometrico dei punti equidistanti da O_1', O_2', O_3' . Evidentemente la intersezione r non può essere parallela al piano α , perchè, se lo fosse, i tre assi radicali dovrebbero essere paralleli fra loro (§ 40, Teor.), e quindi, contrariamente all'ipotesi, i centri dei tre circoli dati sarebbero in linea retta. Dunque la retta r incontra il piano α in un punto, il quale è comune a tutti e tre gli assi radicali.

216 Theorem - *Given three circles in a plane, such that their centers are not in a straight line, the three radical axes of these circles, taken two by two, pass through the same point.*

Let c1, c2 and c3 be the three given circles in an α -plane, so that the three centers are not in a straight line. Let three equal spherical surfaces S1, S2 and S3 of radius greater than the radii of the three given circles pass through them, what is always possible, and let O'1, O'2 and O'3 be the centers of these spheres. The planes perpendicular to the segments O'1O'2, O'2O'3 and O'1O'3 at their midpoints, cut the alpha plane according to the three radical axes of the pairs of circles c1c2, c2c3 and c1c3, and moreover pass through the same straight line r (Theorem 161, Cor.) which is the geometric locus of the points equidistant from O'1, O'2 and O'3. Obviously, the intersection cannot be parallel to the alpha plane because, if it were, the three radical axes would have to be parallel to each other and thus, contrary to the hypothesis, the centers of the three given circles would be in a straight line. So the line r meets the alpha plane at a point, which is common to all three radical axes.

Elementi di geometria, G. Lazzeri, A. Bassani

First and last name:

Read and analyze the theorem extracted from the original historical source "Gli elementi di Geometria" by Lazzari and Bassani. Complete the form that follows.

> Hypothesis:

> Thesis:

Enunciation restatement:

Notes: