

Fusionism

An educational pathway for in-depth study

Elena Lazzari, lzzlne@unife.it
University of Ferrara, Department of Mathematics

The origin and development of fusionism

Fusionism

Definition

Fusionism is an orientation in the teaching of elementary geometry that proposes to deal simultaneously with topics in plane geometry and solid geometry.

Start

- It was born in Europe in the 1840 s.
- It spread to Italy by the 1880 s.
- Its origins can be found in the projective geometry of Gaspard Monge.

In Europe

Early works

- Gabriel Alcippe Mahistre, 1844, Analogies de la Géométrie élémentaire, di Gabriel Alcippe Mahistre, France;
- Anton Bretschneider, 1844, Lehrgebäude der niederen Geometrie für den Unterricht $a b$ Gymnasien und höheren Realschulen, German;

Later works

- Adolph Steen , 1858, Oversigt over Hovedformerne i Rummet som Indledning til Geometrien, di Adolph Steen, Denmark;
- Charles Méray , 1874, Nouveaux éléments de géométrie, France.

In Italy

Early works

- Riccardo De Paolis, 1884, Elementi di geometria, Italy;
- Angelo Andriani, 1887, Elementi di geometria euclidea esposti con nuovo metodo, Italy;

Later works

- Giulio Lazzeri \& Anselmo Bassani, 1891, Elementi di geometria, Italy;
- Giuseppe Zaccaria Reggio, 1898, Complementi di geometria, Italy;
- Giuseppe Ingrami, 1899, Elementi di geometria, Italy.

ELEMENTI

DI

The work of

 Lazzeri and BassaniG. Lazzeri, A. Bassani (1891), Elementi di geometria: textbook for the Royal Naval Academy, Livorno, Giusti, (2° ed 1898).

tipografia di raffaello giusti
editore-libraio

The work of Lazzeri and Bassani

Division into books:

I. Straight line and plane. Segments, angles and dihedrons. First notions of the circle and sphere. Parallel straight lines, straight lines and planes.
II. Polygons, angularids, polyhedra. Distances.
III. Relations between straight lines, planes and spheres. Relations of polygons to a circle and of polyhedra to a sphere, Surfaces and solids of rotation.
IV. General theory of equivalence. Equivalence of polygons and polyhedral surfaces; of spherical polygons and spherical pyramids; of prisms. Boundary quantities. Equivalence of polyhedra: Equivalence of circle and round bodies.

Theory of proportions. Similar figures. Measurements. Application of Algebra to Geometry.

Debate in Italy

Pros

- saving time;
- simplification of some theories of plane geometry;
- better coordination of the study of mathematics with other scientific disciplines.

Cons

- difficulty in conceiving spatial intuition and insufficient models;
- lack of gradualness in moving from easier to more complex topics;
- delay in exposing other theories.

Debate in Italy

Between the 19th and 20th centuries:

Although there were different positions, the generally agreed idea was to allow teachers to choose their favorite approach to teaching elementary geometry.

Early 20th century:

The controversy over fusionism ended after the first decades of the 1900s, with the silent return to the separation of plane and solid geometry.

The goals of fusionism

Educational

- increase the efficacy and efficiency of geometry teaching;
- actualize secondary education.

Epistemological

- make the exposition of elementary geometry simpler and more rigorous;
- make explicit the connection between different theories of geometry and the axioms on which they depend.

The educational pathway for in-depth study

Features

Topic

- radical axis theory

Target audience

- second biennium of high school

Tools

- original historical source: Elementi di Geometria di Lazzeri \& Bassani (1898), http: / / mathematica.sns.it/ opere / 169 /
- dynamic geometry software.

Features

Specific learning goals

From the Indicazioni Nazionali of 2010: "It will deal with the extension of some themes and techniques of plane geometry to space geometry, with the purpose of developing geometric intuition."

Furthermore, in the paper it is emphasized the importance of developing "a historicalcritical view of the relationships between the main themes of mathematical thought and the philosophical, scientific and technological context" is emphasized in the paper.

Features

Timelines

- the proposed educational activity will have an approximate duration of 6 hours.

Methodologies

- cooperative learning;
- teaching laboratory.

Steps of implementation

- small group activity on original historical source;
- group discussion supported by GeoGebra 3D.

Lessons

References

G. Lazzeri, A. Bassani (1891), Elementi di geometria: textbook for the Royal Naval Academy, Livorno, Giusti, (2° ed 1898)

- Book II, Chapter IV (Distance)
- Book III, Chapter III (Circles and spheres systems);

161. Teorema. - Il luogo geometrico dei punti equidistanti da due punti dati è il piano perpendicolure al segmento, che conglunge queı aue punti, condotto per il suo punto di mezzo.

Infatti, dal teorema precedente risulta che la condizione necessaria e sufficiente, affinché un punto sia equidistante da due punti A,B, è che si trovi sopra una delle infinite perpendicolari al segmento che li congiunge, condotte per il suo punto medio C. Siccome il luogo di queste perpendicolari è il piano perpendicolare al segmento AB nel punto C ($\S 60$, Teor.), cosi tutti e soli i punti di un tal piano godono della proprietà di essere equidistanti da A e da B .

Corollari. - 1°. I piani perpendicolari ai lati di un triangolo nei loro punti medi passano per una retta, luogo geometrico dei punti equidistanti dai vertici del triangolo.

Lessons

Distance

Theorem 161° :
The geometric locus of points equidistant from two given points is the plane perpendicular to the segment joining those two points, conducted through its midpoint.

Corollary:

Planes perpendicular to the sides of a triangle at their midpoints pass through a line, wich is the geometric locus of points equidistant from the vertices of the triangle.
214. Teorema. - Il luogo dei punti, tali che i segmenti tangenti condotti da essi a due sfere eguali sieno eguali, è la parte, esterna alle due sfere, del piano perpendicolare al segmento congiungente i centri, nel suo punto di mezzo.

Infatti, ogni punto P di questo piano α è equidistante dai centri $\mathrm{O}_{1}, \mathrm{O}_{2}$ delle due sfere $\mathrm{S}_{1}, \mathrm{~S}_{2}$ ($\S 161$, Teor.); quindi, se P è esterno alle due sfere, e $\mathrm{PA}_{1}, \mathrm{PA}_{2}$ sono due segmenti condotti da P , tangenti alle due sfere, i due triangoli rettangoli $\mathrm{PO}_{1} \mathrm{~A}_{1}, \mathrm{PO}_{2} \mathrm{~A}_{2}$ sono eguali, avendo le ipotenuse $\mathrm{PO}_{1}, \mathrm{PO}_{2}$ eguali e i cateti $\mathrm{O}_{1} \mathrm{~A}_{1}, \mathrm{O}_{2} \mathrm{~A}_{2}$ pure eguali; perciò è pure $\mathrm{PA}_{1} \equiv \mathrm{PA}_{2}$.

Inversamente, se P è un punto tale, che i due segmenti $\mathrm{PA}_{1}, \mathrm{PA}_{4}$ condotti per esso tangenti alle due sfere sieno eguali, i triangoli rettangoli $\mathrm{PO}_{1} \mathrm{~A}_{1}, \mathrm{PO} \mathrm{A}_{2}$, avendo i cateti rispettivamente eguali, sono eguali, e perciò $\mathrm{PO}_{2} \equiv \mathrm{PO}_{2}$, ossia P è equidistante dai centri O_{1} ed O_{2}; dunque P dev'essere situato sul piano α.

Lessons

Circles and spheres systems

Theorem 214° :
The locus of points, such that the tangent segments led from them to two equal spheres are equal, is the part, outside the two spheres, of the plane perpendicular to the segment joining the centers, at its midpoint.

Circles and spheres systems

215. Teorema. - Il luogo dei punti di un piano, tali che i segment i tangenti, condotti da essi a due circoli, non concentrici, del piano medesimo, sieno eguali, è la parte di una retta perpendicolare alla retta dei centri dei due circoli, esterna ai cerchi limitati da essi.

Essendo c_{1}, c_{2} (Fig. 198) due circoli non concentrici di un piano, si facciano passare per essi, due superficie sferiche eguali e di raggio maggiore dei raggi dei due circoli dati, e sieno $\mathrm{O}_{1}^{\prime}, \mathrm{O}_{2}{ }^{\prime} \mathrm{i}$ centri di queste sfere. Allora il piano β, perpendicolare al segmento $\mathrm{O}_{1}{ }^{\prime} \mathrm{O}_{2}{ }^{\prime}$. nel suo punto medio, non può essere parallelo al piano α, poichè. se lo fosse, la retta dei centri delle due sfere, essendo perpendicolare al piano β per costruzione, sarebbe anche perpendicolare al piano $\%$. e perciò i centri dei due circoli dati coinciderebbero, il che è escluso dall'ipotesi. Il piano β taglierà dunque il piano α secondo una retta r. che è il luogo geometrico dei punti del piano α, tali che sieno eguali i segmenti, condotti da essi, tangenti alle due sfere, e quindi anche quelli tangenti ai due circoli dati.
215. Teorema. - Il luogo dei punti di un piano, tali che i segment i tangenti, condotti da essi a due circoli, non concentrici, del piano medesimo, sieno eguali, è la parte di una retta perpendicolare alla retta dei centri dei due circoli, esterna ai cerchi limitati da essi.

Essendo c_{1}, c_{2} (Fig. 198) due circoli non concentrici di un piano, si facciano passare per essi, due superficie sferiche eguali e di raggio maggiore dei raggi dei due circoli dati, e sieno $\mathrm{O}_{1}^{\prime}, \mathrm{O}_{2}^{\prime} \mathrm{i}$ centri di queste sfere. Allora il piano β, perpendicolare al segmento $\mathrm{O}_{1}{ }^{\prime} \mathrm{O}_{2}{ }^{\prime}$. nel suo punto medio, non può essere parallelo al piano α, poichè, se lo fosse, la retta dei centri delle due sfere, essendo perpendicolare al piano β per costruzione, sarebbe anche perpendicolare al piano $\%$. e perciò i centri dei due circoli dati coinciderebbero, il che è escluso dall'ipotesi. Il piano β taglierà dunque il piano α secondo una retta r : che è il luogo geometrico dei punti del piano α, tali che sieno eguali i segmenti, condotti da essi, tangenti alle due sfere, e quindi anche quelli tangenti ai due circoli dati.

Circles and spheres systems

Dimostriamo ora che la retta r è perpendicolare alla retta dei centri $O_{1} O_{2}$. Pertanto osserviamo che le perpendicolari al piano α, condotte per i centri $\mathrm{O}_{1}^{\prime}, \mathrm{O}_{9}^{\prime}$ delle due sfere $\mathrm{S}_{1}, \mathrm{~S}_{2}$, incontrano questo piano nei centri $\mathrm{O}_{1}, \mathrm{O}_{2}$ dei circoli c_{1}, c_{2}, ed individuano un piano γ che è perpendicolare al piano α, e contiene le rette $\mathrm{O}_{1} \mathrm{O}_{2}, \mathrm{O}_{1}{ }^{\prime} \mathrm{O}_{2}{ }^{\prime}$. Ora anche il piano β è perpendicolare al piano γ, essendo perpendicolare alla retta $\mathrm{O}_{1}^{\prime} \mathrm{O}_{2}^{\prime}{ }^{\prime}$ di questo piano, quindi ($\$ 65$, Cor.) i piani α e β si tagliano secondo una retta r, che è perpendicolare a γ, e perciò perpendicolare anche alla retta $\mathrm{O}_{1} \mathrm{O}_{2}$ di questo piano.

Lessons

Theorem 215° :
The locus of points in a plane such that the tangent segments, led by them to two circles, not concentric, in the same plane, are equal, is the part of a straight line perpendicular to the straight line of the centers, outside the circles bounded by them.

Circles and spheres systems

https: / / www.geogebra.org/classic / qe5mnc5p

Circles and spheres systems
216. Teorema. - Dati tre circoli in un piano, tali che i loro centri non sieno in linea retta, i tre assi radicali di questi circoli, presi due a due, passano per uno stesso punto.

Essendo c_{1}, c_{2}, c_{3} i tre circoli dati in un piano α, in modo che i tre centri non sieno in linea retta, si facciano passare per essi, ciò che è sempre possibile, tre superficie sferiche eguali S_{1}, S_{2}, S_{3} di raggio maggiore dei raggi dei tre circoli dati, e sieno $\mathrm{O}_{1}^{\prime}, \mathrm{O}_{2}, \mathrm{O}_{8}^{3}$ i centri di queste sfere. I piani perpendicolari ai segmenti $\mathrm{O}_{1}^{\prime} \mathrm{O}_{2}^{\prime}$, $\mathrm{O}_{1}{ }^{\prime} \mathrm{O}_{3}{ }^{\prime}, \mathrm{O}_{2}{ }^{\prime} \mathrm{O}_{3}^{\prime}$ nei loro punti di mezzo, tagliano il piano α secondo i tre assi radicali delle coppie di circoli $c_{1}, c_{2} ; c_{1}, c_{3} ; c_{2}, c_{3}$, ed inoltre passano per una medesima retta $r\left(\S 161\right.$, Cor. 1°), che è il luogo geometrico dei punti equidistanti da $\mathrm{O}_{1}{ }^{\prime}, \mathrm{O}_{2}{ }^{\prime}, \mathrm{O}_{3}{ }^{\prime}$. Evidentemente la intersezione r non può essere parallela al piano α, perchè, se lo fosse, i tre assi radicali dovrebbero essere paralleli fra loro ($\$ 40$, Teor.), e quindi, contrariamente all'ipotesi, i centri dei tre circoli dati sarebbero in linea retta. Dunque la retta r incontra il piano α in un punto, il quale è comune a tutti e tre gli assi radicali.
216. Teorema. - Dati tre circoli in un piano, tali che i loro centri non sieno in linea retta, i tre assi radicali di questi circoli, presi due a due, passano per uno stesso punto.

Essendo c_{1}, c_{2}, c_{3} i tre circoli dati in un piano α, in modo che i tre centri non sieno in linea retta, si facciano passare per essi, ciò che è sempre possibile, tre superficie sferiche eguali S_{1}, S_{2}, S_{3} di raggio maggiore dei raggi dei tre circoli dati, e sieno $\mathrm{O}_{1}^{\prime}, \mathrm{O}_{2}^{\prime}, \mathrm{O}_{3}^{\prime}$ i centri di queste sfere. I piani perpendicolari ai segmenti $O_{1}^{\prime} \mathrm{O}_{2}^{\prime}$, $\mathrm{O}_{1}{ }^{\prime} \mathrm{O}_{3}^{\prime}, \mathrm{O}_{2}^{\prime} \mathrm{O}_{3}^{\prime}$ nei loro punti di mezzo, tagliano il piano α secondo i tre assi radicali delle coppie di circoli $c_{1}, c_{2} ; c_{1}, c_{3} ; c_{2}, c_{3}$, ed inoltre passano per una medesima retta r ($\$ 161^{\prime}$, Cor. 1°), che è il luogo geometrico dei punti equidistanti da $\mathrm{O}_{1}^{\prime}, \mathrm{O}_{2}{ }^{\prime}, \mathrm{O}_{3}{ }^{\prime}$. Evidentemente la intersezione r non può essere parallela al piano α, perchè, se lo fosse, i tre assi radicali dovrebbero essere paralleli fra loro ($\$ 40$, Teor.), e quindi, contrariamente all'ipotesi, i centri dei tre circoli dati sarebbero in linea retta. Dunque la retta r incontra il piano α in un punto, il quale è comune a tutti e tre gli assi radicali.

Lessons

Circles and spheres systems

Theorem 216° :

Given three circles in a plane, such that their centers are not in a straight line, the three radical axes of these circles, taken two by two, pass through the same point.

Circles and spheres systems

ع1 7. Problema. - Costruire l'asse radicale di due circoli di un piano.
Se i due circoli dati si tagliano, o sono tangenti, sappiamo che il loro asse radicale è la retta che unisce i punti comuni, o la tangente nel punto comune. Se poi i due circoli c_{1}, c_{2} (Fig. 199) non si tagliano (cioè l'uno è esterno o interno all'altro) si descriva un terzo circolo c_{3}, che li tagli ambedue, e il cui centro non sia in linea retta coi centri dei circoli dati. Allora le due rette, che uniscono i punti d'incontro di questo circolo con l'uno e coll'altro dei due circoli dati, si tagliano in un punto P, che è il centro radicale dei tre circoli, e la perpendicolare, condotta da questo punto alla retta dei centri dei due circoli dati, sarà l'asse radicale dei medesimi.

Fig. 199.

Lessons

Problem 217° :

Construct the radical axis of two circles in a plane.

Circles and spheres systems

218. Teorema. - Il luogo dei punti, tali che i segmenti tangenti, condotti da essi a due superficie sferiche non concentriche, sieno eguali, è la parte di un piano, perpendicolare alla retta dei centri delle due sfere, esterna ad esse.

Essendo $\mathrm{S}_{1}, \mathrm{~S}_{2}$ le due sfere date, $\mathrm{O}_{1}, \mathrm{O}_{2} \mathrm{i}$ loro centri, si conduca un piano α per la retta $\mathrm{O}_{1} \mathrm{O}_{2}$; esso taglia le due superficie sferiche secondo due circoli massimi c_{1}, c_{2}, aventi per asse radicale una retta r perpendicolare alla retta dei centri $\mathrm{O}_{1} \mathrm{O}_{2}$. Facendo rotare il piano α di un mezzo giro attorno alla sua retta $\mathrm{O}_{1} \mathrm{O}_{2}$, evidentemente i circoli c_{1}, c_{2} descrivono le superficie sferiche S_{1}, S_{2}, e la retta r descrive un piano perpendicolare alla $\mathrm{O}_{1} \mathrm{O}_{2}$, che è il luogo dei punti, tali che i segmenti tangenti, condotti da essi alle due superficie sferiche, sono eguali.
218. Teorema. - Il luogo dei punti, tali che i segmenti tangent i, condotti da essi a due superficie sferiche non concentriche, sieno eguali, è la parte di un piano, perpendicolare alla retta dei centri delle due sfere, esterna ad esse.

Essendo $\mathrm{S}_{1}, \mathrm{~S}_{2}$ le due sfere date, $\mathrm{O}_{1}, \mathrm{O}_{2} \mathrm{i}$ loro centri, si conduca un piano α per la retta $O_{1} O_{2}$; esso taglia le due superficie sferiche secondo due circoli massimi c_{1}, c_{2}, aventi per asse radicale una retta r perpendicolare alla retta dei centri $\mathrm{O}_{1} \mathrm{O}_{2}$. Facendo rotare il piano α di un mezzo giro attorno alla sua retta $\mathrm{O}_{1} \mathrm{O}_{2}$, evidentemente i circoli c_{1}, c_{2} descrivono le superficie sferiche S_{1}, S_{2}, e la retta r descrive un piano perpendicolare alla $\mathrm{O}_{1} \mathrm{O}_{2}$, che è il luogo dei punti, tali che i segmenti tangenti, condotti da essi alle due superficie sferiche, sono eguali.

Lessons

Circles and spheres systems

Theorem 218 ${ }^{\circ}$:

The geometric locus of points, such that the tangent segments, led from them to two nonconcentric spherical surfaces, are equal, is the part of a plane, perpendicular to the line of the centers of the two spheres, outside them.

Lessons

Circles and spheres systems

219. Teorema. - Date tre superficie sferiche, i cui centri non sieno in linea retta, i tre piani radicali di queste superficie, prese due a due, passano per una stessa retta perpendicolare al piano dei loro centri.

Lessons

Radical axis of three spherical surfaces
219. Teorema. - Date tre superficie sferiche, i cui centri non sieno in linea retta, i tre piani radicali di queste superficie, prese due a due, passano per una stessa retta perpendicolare al piano dei loro centri.

Sieno (Fig. 218) $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ le tre superficie sferiche date, $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ i loro centri, non situati sopra una medesima retta, ed $\alpha_{12}, \alpha_{13}, \alpha_{23}$ i piani radicali delle coppie di superficie sferiche $S_{1}, S_{2} ; S_{1}, S_{3} ; S_{2}, S_{3}$. Sappiamo ($\S 218$, Cor. 1°), che i piani radicali α_{12}, α_{18} sono rispettivamente perpendicolari alle rette $\mathrm{O}_{1} \mathrm{O}_{2}, \mathrm{O}_{1} \mathrm{O}_{3}$, e perciò si tagliano secondo una retta, la quale è perpendicolare al piano $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$, ed è tale che i segmenti tangenti alle tre superficie sferiche, condotti per ciascuno de'suoi punti, esterno ad esse, sono eguali. Siccome i segmenti tangenti condotti dai punti di questa retta alle due superficie $\mathrm{S}_{2}, \mathrm{~S}_{3}$ sono eguali, essa dovrà giacere anche sul piano radicale α_{23} di queste due superficie, e quindi tutti i tre piani radicali passano per la stessa retta perpendicolare al piano dei centri delle tre superficie sferiche.

Lessons

Circles and spheres systems

Theorem 219 ${ }^{\circ}$:

Given three spherical surfaces whose centers are not in a straight line, the three radical planes of these surfaces, taken two by two, pass through the same straight line perpendicular to the plane of their centers.

Lessons

Circles and spheres systems

- Paragraph 215 (radical
- Paragraph 218 (radical plane of two spherical axis of two circles)
- Paragraph 216 (radical center of three circles)

Essential Bibliography

- Borgato, M. T. (2016). Il fusionismo: moda didattica o riflessione sui fondamenti della geometria? Periodico di Matematiche, s. XII 8(2), 45-65.
- Lazzeri, G, Bassani, A. (1891), Elementi di geometria: libro di testo per la R. Accademia Navale, Livorno: Giusti, (2a ed 1898).
- Menghini, M. (2019). The fusion of plane and solid geometry in the teaching of geometry: Textbook, Aims, Discussions. Proceedings of the Eighth European Summer University on History and Epistemology in Mathematics Education ESU 8, 679-694.

